留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷竞技app官方版下载ios-雷竞技官方平台

张长建 蒋林 文欢 吕晶 昌琪

张长建, 蒋林, 文欢, 吕晶, 昌琪. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333
引用本文:
张长建, 蒋林, 文欢, 吕晶, 昌琪. 雷竞技app官方版下载ios-雷竞技官方平台[J]. 石油实验地质, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333
ZHANG Changjian, JIANG Lin, WEN Huan, LÜ Jing, CHANG Qi. Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333
Citation:
ZHANG Changjian, JIANG Lin, WEN Huan, LÜ Jing, CHANG Qi. Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 333-341. doi: 10.11781/sysydz202402333

雷竞技app官方版下载ios-雷竞技官方平台

doi: 10.11781/sysydz202402333
基金项目: 

中国石化重大科技项目 P20042-1

详细信息
作者简介:

张长建(1983—),男,硕士,副研究员,从事油气地质研究。E-mail: 273419780@qq.com

通讯作者:

蒋林(1987—),男,硕士,副研究员,从事油气开发研究。E-mail: jianglin.xbsj@sinopec.com

  • 中图分类号: TE122.3

  • 文章访问数:  60
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2024-01-31
  • 刊出日期:  2024-03-28
  • Development characteristics of Ordovician ancient subterranean river system in thrust anticline area of Tahe Oilfield, Tarim Basin

  • 雷竞技官方平台: 塔里木盆地塔河油田古暗河系统研究尚处于初始阶段,主要从暗河的深浅分布、结构样式等特征开展暗河洞穴的划分,较少从构造、断裂、古地貌、地下水位等地质方面综合分析复杂暗河系统的空间发育规律,致使暗河的主次从属关系、空间叠置样式、原始连通关系难以厘清,从而制约了塔河油田开发后期的综合治理研究。为了明确塔河油田主体区逆冲背斜区奥陶系古暗河系统发育特征,利用构造断裂解析、古地貌恢复、地震属性刻画、纵断剖面解读等方法进行了S67井区古暗河的类型识别、系统划分和地质成因研究,尤其首次识别并剖析了潜流回流暗河。结果表明,S67井区处于塔河主体区岩溶台原南缘的低地势区,发育幅差较小的峰丛洼地、溶丘洼地,地表水系下切深度较浅;逆冲背斜为低角度逆冲推覆构造样式,逆冲背斜之上的网格状断裂为多层状暗河系统提供有利溶蚀通道。研究区奥陶系发育相对独立的、树枝状结构的地下水位暗河系统和潜流带暗河系统,地下水位型暗河可分为主干型、支流型和废弃型,潜流回流暗河可分为上升型、对称型。控制逆冲背斜区古暗河发育的主要因素有古地貌、地下水位、逆冲背斜构造和次级断裂网络等。

     

    关键词:
  • 走滑断裂 / 
  • 逆冲断裂 / 
  • 古地貌 / 
  • 暗河 / 
  • 潜流回路 / 
  • 地下水位 / 
  • 奥陶系 / 
  • 塔河油田 
  • HTML全文
  • 图  1  潜流回路洞道横截面示意及沉积物充填模式

    据参考文献[3]修改。

    Figure  1.  Schematic cross-section of a phreatic loop cave and sediment filling mode

    图  2  塔里木盆地塔河油田S67井区构造位置(a)、中下奥陶统古地貌(b)及地层柱状图(c)

    Figure  2.  Structural location (a), paleogeomorphology of Middle-Lower Ordovician (b), and stratigraphic column (c) of S67 well block of Tahe Oilfield, Tarim Basin

    图  3  塔里木盆地塔河油田S67井区中下奥陶统断裂分布

    a.中下奥陶统鹰山组云质灰岩段顶(T76)以下0~60 ms相干属性;b.中下奥陶统鹰山组下段(T76—T78)张量梯度厚度属性;c.中下奥陶统顶断裂平面分布。

    Figure  3.  Fault distribution in Middle-Lower Ordovician of S67 well block of Tahe Oilfield, Tarim Basin

    图  4  塔里木盆地塔河油田S67井区逆冲断裂横切地震剖面

    剖面位置见图 3c

    Figure  4.  Transverse seismic profile of thrust fault in S67 well block of Tahe Oilfield, Tarim Basin

    图  5  塔里木盆地塔河油田S67井区古暗河岩溶洞穴分布

    a.中下奥陶统顶面以下60 ms振幅属性;b.中下奥陶统鹰山组云质灰岩段顶(T76)以上60 ms振幅属性;c.暗河洞穴系统空间雕刻。

    Figure  5.  Plane distribution of paleokarst caves in S67 well block of Tahe Oilfield, Tarim Basin

    图  6  塔里木盆地塔河油田S67井区地下水位暗河地震响应特征

    a.主干地下水位暗河标定地震剖面;b.主干地下水位暗河标定波阻抗剖面;c.支流地下水位暗河标定地震剖面;d.支流地下水位暗河标定波阻抗剖面;e.废弃地下水位暗河标定地震剖面;f.废弃地下水位暗河标定波阻抗剖面。剖面位置见图 5a

    Figure  6.  Seismic response characteristics of water-table subterranean river of S67 well block of Tahe Oilfield, Tarim Basin

    图  7  塔里木盆地塔河油田S67井区潜流回路暗河地震响应特征

    a.上升型潜流回流暗河(北支)标定地震剖面;b.上升型潜流回流暗河(北支)标定波阻抗剖面;c.上升型潜流回流暗河(南支)标定地震剖面;d.上升型潜流回流暗河(南支)标定波阻抗剖面;e.对称型潜流回流暗河标定地震剖面;f.对称型潜流回流暗河标定波阻抗剖面。剖面位置见图 5b

    Figure  7.  Seismic response characteristics of phreatic loop subterranean river in S67 well block of Tahe Oilfield, Tarim Basin

    图  8  塔里木盆地塔河油田S67井区古暗河系统分布

    Figure  8.  Plane distribution of paleokarst subterranean river system of S67 well block of Tahe Oilfield, Tarim Basin

    图  9  塔里木盆地塔河油田S67井区古暗河系统发育模式示意

    Figure  9.  Development pattern of paleokarst subterranean river system of S67 well block of Tahe Oilfield, Tarim Basin

  • 参考文献(22)
  • [1]
    张任. 岩溶洞穴分类新思考[J]. 中国岩溶, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htm

    ZHANG Ren. New consideration on classification of karst caves[J]. Carsologica Sinica, 1994(3): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR403.007.htm
    [2]
    MYLROIE J E. Hydrologic classification of caves and karst[M]//LAFLEUR R G. Groundwater as a geomorphic agent. London: Routledge, 1984: 157-172.
    [3]
    FARRANT A R, SMART P L. Role of sediment in speleogenesis; sedimentation and paragenesis[J]. Geomorphology, 2011, 134(1/2): 79-93.
    [4]
    朱学稳. 桂林岩溶地貌与洞穴研究[R]. 桂林: 地科院岩溶所, 1988.

    ZHU Xuewen. Study on karst landform and caves in Guilin[R]. Guilin: Geological Publishing House, 1988.
    [5]
    于聪灵, 蔡忠贤, 杨海军, 等. 基于BP神经网络预测轮古油田奥陶系碳酸盐岩油藏洞穴充填程度[J]. 新疆石油地质, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htm

    YU Congling, CAI Zhongxian, YANG Haijun, et al. Prediction of cave filling degree in Ordovician carbonate reservoirs based on BP neural network in Lungu Oilfield, Tarim Basin[J]. Xinjiang Petroleum Geology, 2018, 39(5): 614-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805019.htm
    [6]
    KAUFMANN G, ROMANOV D. Cave development in the Swabian Alb, south-west Germany: a numerical perspective[J]. Journal of Hydrology, 2008, 349(3/4): 302-317.
    [7]
    鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部"层控"与"断控"型油藏特征: 以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461

    LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of 'strata-bound' and 'fault-controlled' reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018, 40(4): 461-469. doi: 10.11781/sysydz201804461
    [8]
    鲁新便, 何成江, 邓光校, 等. 塔河油田奥陶系油藏喀斯特古河道发育特征描述[J]. 石油实验地质, 2014, 36(03): 268-274. doi: 10.11781/sysydz201403268

    LU Xinbian, HE Chengjiang, DENG Guangxiao, et al. Development features of karst ancient river system in Ordovician reservoirs, Tahe Oil Field[J]. Petroleum Geology & Experiment, 2014, 36(3): 268-274. doi: 10.11781/sysydz201403268
    [9]
    张长建, 吕艳萍, 张振哲. 塔里木盆地塔河油田西部斜坡区中下奥陶统古岩溶洞穴发育特征[J]. 石油实验地质, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008

    ZHANG Changjian, LÜ Yanping, ZHANG Zhenzhe. Features of Middle-Lower Ordovician paleo-karst caves in western slope area, Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 1008-1017. doi: 10.11781/sysydz2022061008
    [10]
    巫波, 荣元帅, 刘遥, 等. 塔河油田暗河油气藏勘探潜力分析[J]. 断块油气田, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htm

    WU Bo, RONG Yuanshuai, LIU Yao, et al. Exploration potential of oil and gas reservoirs of ancient underground river in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 702-704. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506005.htm
    [11]
    吕心瑞, 孙建芳, 邬兴威, 等. 缝洞型碳酸盐岩油藏储层结构表征方法: 以塔里木盆地塔河S67单元奥陶系油藏为例[J]. 石油与天然气地质, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htm

    LÜ Xinrui, SUN Jianfang, WU Xingwei, et al. Internal architecture characterization of fractured-vuggy carbonate reservoirs: a case study on the Ordovician reservoirs, Tahe Unit S67, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 728-737. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103018.htm
    [12]
    荣元帅, 胡文革, 蒲万芬, 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599

    RONG Yuanshuai, HU Wenge, PU Wangfen, et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015, 37(5): 599-605. doi: 10.11781/sysydz201505599
    [13]
    耿甜, 吕艳萍, 巫波, 等. 缝洞型油藏储量评价方法及开发对策[J]. 特种油气藏, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htm

    GENG Tian, LYU Yanping, WU Bo, et al. Reservoir evaluation method and development countermeasures for fracture-vuggy reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202106017.htm
    [14]
    漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm

    QI Lixin, YUN Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe Oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm
    [15]
    李源, 鲁新便, 蔡忠贤, 等. 塔河油田海西早期古水文地貌特征及其对洞穴发育的控制[J]. 石油学报, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htm

    LI Yuan, LU Xinbian, CAI Zhongxian, et al. Hydrogeomorphologic characteristics and its controlling caves in Hercynian, Tahe Oilfield[J]. Acta Petrolei Sinica, 2016, 37(8): 1011-1020. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201608007.htm
    [16]
    邓兴梁, 张庆玉, 梁彬, 等. 塔中Ⅱ区奥陶系鹰山组岩溶古地貌恢复方法研究[J]. 中国岩溶, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htm

    DENG Xingliang, ZHANG Qingyu, LIANG Bin, et al. Reconstruction of karst palaeogeomorphology for the Ordovician Ying-shan Formation in the central Tarim Basin[J]. Carsologica Sinica, 2015, 34(2): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201502009.htm
    [17]
    吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444

    LÜ Haitao, ZHANG Shaonan, MA Qingyou. Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4): 444-452. doi: 10.11781/sysydz201704444
    [18]
    汪洋, 张晓楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394

    WANG Yang, ZHANG Xiaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394
    [19]
    邓铭哲, 蔡芃睿, 陆建林, 等. 走滑断裂演化程度的表征参数研究[J]. 石油实验地质, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007

    DENG Mingzhe, CAI Pengrui, LU Jianglin, et al. Characterization parameters of the evolution degree of strike-slip faults[J]. Petroleum Geology & Experiment, 2023, 45(5): 1007-1015. doi: 10.11781/sysydz2023051007
    [20]
    农社卿, 马洪敏, 朱小露, 等. 碳酸盐岩泥质充填溶洞段测井资料有效性评价方法[J]. 石油天然气学报(江汉石油学院学报), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htm

    NONG Sheqing, MA Hongmin, ZHU Xiaolu, et al. Method of logging data effectiveness evaluation in carbonate argillaceous filled caves[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2014, 36(11): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201411021.htm
    [21]
    PALMER A N. Distinction between epigenic and hypogenic maze caves[J]. Geomorphology, 2011, 134(1/2): 9-22.
    [22]
    FORD D C. Perspectives in karst hydrogeology and cavern genesis[M]//PALMER A N, PALMER M V, SASOWSKY I D. Karst modeling. Leesburg: Karst Waters Institute Special Publication, 1999: 9-29.
  • 相关文章
  • 施引文献
  • 资源附件(0)
  • 加载中
  • WeChat 点击查看大图
    图(9)
    计量
  • 文章访问数:  60
  • HTML全文浏览量:  14
  • PDF下载量:  11
  • 被引次数: 0
  • 出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2024-01-31
  • 刊出日期:  2024-03-28
  • 目录

    /

    返回文章
  • 分享
  • 用微信扫码二维码

    分享至好友和朋友圈

    返回